Performance Analysis of Classifiers in Identifying NREM Sleep and Awaken Stages from EEG Signals

Author:

Abstract

Electroencephalogram is a medical procedure which helps in analyzing the activities of the brain through electrical signals. In this paper a simple classification technique of EEG signal into two stages as NREM sleep and awaken stages had been undertaken. Classifying these stages helps the physician to understand the patient's sleep disorder by knowing whether the person's brain is in NREM sleep or awaken stages. Physionet EEG signals are samples of 256 signals per second for 10 seconds duration is used in this work. Then the EEG samples properties are analyzed through various parameters like statistical features, entropy Pearson correlation coefficient, Power spectral density, scatter plots and Hilbert transform plots. The classification of NREM sleep and awaken stage is performed by the ten different classifiers broadly grouped into non linear and hybrid one. The classifiers used include Linear Regression, Non Linear Regression, Logistic Regression, Principal Component Analysis, Kernel Principal Component Analysis, Expectation Maximization, Compensatory Expectation Maximization, Expectation Maximization with Logistic Regression Compensatory Expectation Maximization with Logistic Regression, and Firefly. The performances of the classifiers are analyzed using regular parameters like sensitivity, accuracy, specificity, performance index. The highest accuracy of 95.575% is achieved with linear regression for awaken signal and an accuracy of 95.315% is achieved using kernel PCA for sleep signal.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance analysis of classifiers in the detection of seizer and normal stages from EEG signals;SECOND INTERNATIONAL CONFERENCE ON CIRCUITS, SIGNALS, SYSTEMS AND SECURITIES (ICCSSS - 2022);2023

2. Performance Analysis of the Classifier in the Classification of Normal-Sleep and Seizure from EEG Signal;2022 Smart Technologies, Communication and Robotics (STCR);2022-12-10

3. Detection of liver abnormalities—A new paradigm in medical image processing and classification techniques;International Journal of Imaging Systems and Technology;2022-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3