Three-Layer Data Clustering Model for Multi-View Customer Segmentation using K-Means

Author:

Abstract

Customer Relationship Management (CRM) system is one of the methods to increase customer satisfaction with the services provided by the company. The data in a CRM system sometimes have not been utilized properly to find specific information about customer needs. The data mining process can help companies to segment and retrieve useful information about customers. The segmentation of customers can be categorized into groups based on the RFM (Recency, Frequency, and Monetary) values of the customers. Several studies have used the RFM model as a basis for customer segmentation. However, the methods proposed in previous studies are very specific to certain industries and the range of RFM scores used is also very subjective. Also, as the business grows there are challenges with RFM score measurement. RFM score measurement needs frequent adjustments in which this adjustment is not easy using the existing methods. Therefore, this study proposed a novel method to overcome the limitation of the existing methods using combined K-Means and Davies-Bouldin Index (DBI) to find the appropriate range of RFM scores. Based on our study in a telecommunication industry the proposed method simplify the measurement of the RMF scores as the data grows. This research also provided the appropriate RFM score range through the K-Means approach based on the optimal K value of the K-Means algorithm. Our proposed method could be implemented in other industries since it only depends on the values of RFM from the correspond data for each customer.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on the Evaluation of College Curriculum Teaching Effect Based on Association Rules;Atlantis Highlights in Social Sciences, Education and Humanities;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3