Machine Learning and Prediction-Based Resource Management in IoT Considering Qos

Author:

Abstract

Internet of Things (IoT) is one of the fast-growing technology paradigms used in every sectors, where in the Quality of Service (QoS) is a critical component in such systems and usage perspective with respect to ProSumers (producer and consumers). Most of the recent research works on QoS in IoT have used Machine Learning (ML) techniques as one of the computing methods for improved performance and solutions. The adoption of Machine Learning and its methodologies have become a common trend and need in every technologies and domain areas, such as open source frameworks, task specific algorithms and using AI and ML techniques. In this work we propose an ML based prediction model for resource optimization in the IoT environment for QoS provisioning. The proposed methodology is implemented by using a multi-layer neural network (MNN) for Long Short Term Memory (LSTM) learning in layered IoT environment. Here the model considers the resources like bandwidth and energy as QoS parameters and provides the required QoS by efficient utilization of the resources in the IoT environment. The performance of the proposed model is evaluated in a real field implementation by considering a civil construction project, where in the real data is collected by using video sensors and mobile devices as edge nodes. Performance of the prediction model is observed that there is an improved bandwidth and energy utilization in turn providing the required QoS in the IoT environment.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revolutionizing Material Selection in Construction 4.0: A Comparative Analysis of Artificial Intelligence Technologies;2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE);2023-05-12

2. Improvement of QoS Parameters of IoT Networks Using Artificial Intelligence;Smart Innovation, Systems and Technologies;2021-10-09

3. Material Classification via Machine Learning Techniques: Construction Projects Progress Monitoring;Deep Learning Applications;2021-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3