Bacterial and Virus affected Citrus Leaf Disease Classification using Smartphone and SVM

Author:

Abstract

Automatic detection of citrus leaves disease is very much essential for the better productivity of citrus. Citrus leaves are affected by bacteria, fungus and virus respectively. Farmer detects the diseases of the plant using laboratory, naked eyes or using expert’s view. The rural farmers often face difficulties to detect these diseases due to the non availability of the laboratories in their area. Here in this paper, a computer automation system is proposed to detect the diseases of citrus leaves on an early stage. Citrus leaves images are captured using Smartphone. Captured images are used to extract the different features of the citrus leaves samples using Gray Level Co-occurrence Matrix. Finally, citrus greening and citrus CTV images are classified from citrus healthy images using Gaussian kernel based support vector machine. Accuracy of the kernel is evaluated for the different values of Gamma parameter of kernel. The Gaussian kernel gives maximum accuracy (95.5%) with Gamma value 1.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3