Improving Intrusion Detection System using an Extreme Learning Machine Algorithm

Author:

Abstract

An Intrusion Detection System (IDS) is a system, that checks the network or data for abnormal actions and when such activity is discovered it issues an alert. Numerous IDS techniques are in use these days but one major problem with all of them is their performance. Various works have been done on this issue using support vector machine and multilayer perceptron. Supervised learning models such as support vector machines with related learning algorithms are used to analyze the data which is used for regression analysis and also classification. The IDS is used in analyzing big data as there is huge traffic which has to be analyzed to check for suspicious activities, and also be successful in doing so. Hence, an efficient and fast classification algorithm is required. Machine learning techniques such as neural networks and extreme machine learning are used. Both of these techniques are highly regarded and are considered one of the best techniques. Extreme learning machines are feed forward neural networks which have one hidden layer and no back propagation used for classification. Once the intrusion is detected using IDS through ELM then we are also going to detect the type of intrusion using the Random Forest Technique (Multi class classification) efficiently with a higher rate of accuracy and precision. The NSL_KDD dataset which is very well-known used for the training as well as testing of these IDS algorithms. This work determines that compared to artificial neural network and logistic regression extreme learning machines provide a much better rate of intrusion detection, which is 93.96% and is also proven to be more efficient in terms of execution time of 38 seconds

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3