Information Extraction from Multifaceted Unstructured Big Data

Author:

Abstract

In the era of digital globalization, huge volume and variety of data are being produced at a very high rate. Every day, the world is producing around 2.5 quintillion bytes of data. According to IDC, by 2020, over 40 zettabytes of data will be generated and reproduced. Digital data have become a deluge, overwhelming in every field of information technology (IT), business, science and engineering. These fields are shifting to smart and advanced technologies such as smart manufacturing industries, data-aware medical sciences, and other smart applications. These applications are facilitating the industries in context of data-driven decision making, big data storage, and complex analysis of large data sets. Also, these applications are contributing to generate big data deluge where a variety of data necessitate the industries to use advanced IT approaches. 95% of the digital universe is unstructured data. It is rich data as it contains information that can play a vital role to improve big data analytics. The heterogeneity, complexity, lack of structured information, poor quality and scalability of unstructured data generates difficulties in adapting traditional information extraction techniques. Information extraction can play a vital role in transformation of unstructured data into useful information. A multistep pipeline with data preprocessing steps, extraction methods and representation are utmost requirement to improve the unstructured data analytics. In this regard, this paper presents a short review of information extraction process w.r.t. input data type, extraction methods with their corresponding techniques, and representation of extracted information. The issues with unstructured data and the challenges to information extraction from multifaceted unstructured big data as well as the future research directions have also been discussed

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of artificial intelligence in technology management: status quo, challenges and opportunities;Technology Analysis & Strategic Management;2024-08-08

2. Trích xuất và phân tích thông tin trên Google về sản phẩm chăm sóc sắc đẹp;CTU Journal of Science;2024-04-26

3. NLP And IR Applications For Financial Reporting And Non-Financial Disclosure. Framework Implementation And Roadmap For Feasible Integration With The Accounting Process;Proceedings of the 2022 6th International Conference on Natural Language Processing and Information Retrieval;2022-12-16

4. Human and Technological Infrastructures of Fact-checking;Proceedings of the ACM on Human-Computer Interaction;2022-11-07

5. Unstructured Over Structured, Big Data Analytics and Applications In Accounting and Management;Proceedings of the 2022 6th International Conference on Cloud and Big Data Computing;2022-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3