Abstract
This Raspberry Pi Single Board Computer-Based Cataract Detection System using Deep Convolutional Neural Network through GoogLeNet Transfer Learning and MATLAB digital image processing paradigm based on Lens Opacities Classification System III with Python application, which would capture the image of the eyes of cataract patients to detect the type of cataract without using dilating drops. Additionally, the system could also determine the severity, grade, color or area, and hardness of cataract. It would also display, save, search and print the partial diagnosis that can be done to the patients. Descriptive quantitative research, Waterfall System Development Life Cycle and Evolutionary Prototyping Models was used as the methodologies of this study. Cataract patients and ophthalmologists of one of the eye clinics in City of Biñan, Laguna, as well as engineers and information technology professionals tested the system and also served as respondents to the conducted survey. Obtained results indicated that the detection of cataract and its characteristics using the system were accurate and reliable, which has a significant difference from the current eye examination for cataract. Generally, this would be a modern cataract detection system for all Cataract patients
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Management of Technology and Innovation,General Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Cataract Disease Classification using Convolutional Neural Network Architectures;2023 Second International Conference on Electronics and Renewable Systems (ICEARS);2023-03-02
2. Systematic Literature Review: Detecting Cataract With Deep Learning;2022 10th International Conference on Cyber and IT Service Management (CITSM);2022-09-20
3. Automated Detection of Cataract Using a Deep Learning Technique;Lecture Notes in Electrical Engineering;2022