Efficient CNN for Lung Cancer Detection

Author:

Abstract

The machine learning based solutions for medical image analysis are successful in detection of wide variety of anomalies in imaging procedures. The aim of the medical image analysis systems based on machine learning methods is to improve the accuracy and minimize the detection time. The aim in turn contributes to early disease detection and extending the patient life. This paper presents an efficient CNN (EFFI-CNN) for Lung cancer detection. EFFI-CNN consists of seven CNN layers (i.e. Convolution layer, Max-Pool layer, Convolution layer, Max-Pool layer, fully connected layer, fully connected layer and Soft-Max layer). EFFI-CNN uses lung CT scan images from LIDC-IDRI and Mendeley data sets. EFFI-CNN has a unique combination of CNN layers with parameters (Depth, Height, Width, filter Height and filter width).

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of Healthcare Operations Management using TOPSIS Method;Journal on Innovations in Teaching and Learning;2024-07-31

2. The Company Law Analysis using the (COPRAS) Method;Journal on Innovations in Teaching and Learning;2024-07-31

3. An Overview of Qualitative Comparative Analysis Using GRA Methodology;Journal on Innovations in Teaching and Learning;2024-07-31

4. Evaluation of Healthcare Operations Management using TOPSIS Method;Journal on Innovations in Teaching and Learning;2024-07-31

5. Analysis of Unreliable Repetition G-Sequence with Holiday Disturbance under ARAS Methodology;Journal on Materials and its Characterization;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3