Odia Characters and Numerals Recognition using Hopfield Neural Network Based on Zoning Feature

Author:

Abstract

Odia character and digits recognition area are vital issues of these days in computer vision. In this paper a Hope field neural network design to solve the printed Odia character recognition has been discussed. Optical Character Recognition (OCR) is the principle of applying conversion of the pictures from handwritten, printed or typewritten to machine encoded text version. Artificial Neural Networks (ANNs) trained as a classifier and it had been trained, supported the rule of Hopfield Network by exploitation code designed within the MATLAB. Preprocessing of data (image acquisition, binarization, skeletonization, skew detection and correction, image cropping, resizing, implementation and digitalization) all these activities have been carried out using MATLAB. The OCR, designed a number of the thought accuses non-standard speech for different types of languages. Segmentation, feature extraction, classification tasks is the well-known techniques for reviewing of Odia characters and outlined with their weaknesses, relative strengths. It is expected that who are interested to figure within the field of recognition of Odia characters are described in this paper. Recognition of Odia printed characters, numerals, machine characters of research areas finds costly applications within the banks, industries, offices. In this proposed work we devolve an efficient and robust mechanism in which Odia characters are recognized by the Hopfield Neural Networks (HNN).

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pattern Storage & Recalling Using Hopfield Neural Network and HOG Feature Based SVM Classifier: An Experiment with Handwritten Odia Numerals;2023 International Conference on Emerging Smart Computing and Informatics (ESCI);2023-03-01

2. Experimenting with Assamese Handwritten Character Recognition;Big-Data-Analytics in Astronomy, Science, and Engineering;2022

3. Quantitative Analysis of Deep CNNs for Multilingual Handwritten Digit Recognition;Advances in Intelligent Systems and Computing;2020-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3