Development of Automatic Home-Based Fish Farming using the Internet of Things

Author:

Abstract

This research purposed to design an automatic home-based fish farming using the internet of things and to evaluate its efficiency. There were 3 processes in this research: 1. creating a home-based fish farming environment (fish pond) 2. designing and developing home-based fish farming by using the internet of things and 3. experimenting and implementing the system. The fish pond (90 x 180 x 50 cm) was made up of 90 blocks. It was coated with waterproofed plastic in order to contain a maximum of 80 cm x 170 cm x 40 cm. or 0.544 m3 of water. The automatic home-based fish farming system using the internet of things consisted of 6 parts in the form of 1. A NodeMCU Microcontroller 2. An automatic fish feeder 3. A relay module 4. Home Wi-Fi 5. Web Application 6. Line Notify. The NodeMCU Microcontroller was the main module use to control the automatic working of the system. The experiment resulted in a number of findings. Firstly, Fish feeder experiment, Experiment for the fish feeder to release food for 30 grams, 5 times, average time 23 seconds, error rate + 8.70%, -7.25%; Experiment for the fish feeder to release food for 45 grams, 5 times, average time 35 seconds, error rate + 10.00%, -8.57%; Experiment for the fish feeder to release food for 60 grams, 5 times, average time 48 seconds, error rate + 2.08%, -5.27%; finally, 75g fish feeder, 5 times, average time 75 seconds, error rate +8.33%, -8.02%. As a result, the dispensing variation was no more than ±10%. Secondly, the timing of this machine was divided into 4 periods: during days 1 to 30, it dispensed food 30g. During days 31 to 60, it dispensed food 45g. During days 61 to 90, it dispensed food 60g. During days 91 to 142, it dispensed food 75g. It would feed 2 times: 7 am. and 6 pm. each day. Thirdly, the test was to turn on and off the water and oxygen pumps by just clicking a button on the web application. The system was used to feed 80 3-inch long catfish over a period of 142 days. At the end of the period, 43 catfish were left with 37 having died. The survival rate was 54%. These fish weighed 5,380 grams in total and their growth varied. There were 24 small fish which weighed 120-220 gram (61%), 10 medium sized fish which weighed 230-330 (23%) and 7 large fish which weighed 340-440 (16%). As a result, this system could be used for feeding fish, but it needs some improvements such as the introduction of a waste water monitoring system and an automatic water changing system which would enhance the automatic working of the system.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3