Evaluating Financial Risk in the Transition from EONIA to ESTER: A TimeGAN Approach with Enhanced VaR Estimations

Author:

,Kanaparthi Vijaya KrishnaORCID

Abstract

This study investigates the evaluation of multivariate time series data using a Generative Adversarial Network (GAN). Calculating the Value at Risk (VaR) for the Euro Overnight Index Average (EONIA) over different time periods and evaluating the financial risk consequences of the EONIA to Euro Short-Term Rate (ESTER) transition are the main objectives. Through the use of a particular GAN called TimeGAN, which focuses on macro-finance temporal and latent representation, the study aims to predict short-rate risk for EONIA. When estimating lower VaR and the 1-day higher VaR for EONIA, the TimeGAN model performs poorly. However, it performs well when estimating upper VaR for 10-day and 20-day periods. The variation of TimeGAN with PLS+FM, which uses Positive Label Smoothing and Feature Matching shows the upper and lower VaR for EONIA over 10 and 20-day periods are excellently estimated by this enhanced model. Simulations for the 20-day EONIA show less variation between TimeGAN variations than a one-factor Vasicek model, even with the proper VaR estimations. This study evaluates the proposed transition mapping from ESTER to EONIA by the European Central Bank (ECB), calculating an ESTER+8.5bps shift with the TimeGAN with PLS+FM. The results do not refute the validity of the ECB's proposed EONIA-ESTER mapping. Additionally, the TimeGAN with PLS+FM accurately predicts VaR for 10 and 20-day periods for ESTER using the EONIA-ESTER mapping. Whereas the one-factor Vasicek model finds it difficult to estimate higher VaR for ESTER over the same time frames.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3