Detection and Classification of Paddy Crop Disease using Deep Learning Techniques

Author:

Abstract

Agricultural production plays a vital role in Indian economy. The biggest menace for a farmer is the various diseases that infect the crop. Quality and high production of crops is involved with factors like efficient detection of diseases in the crop. The disease detection though Naked-eye observation of expert can be prohibitively expensive and requires meticulous and scrupulous analysis to detect the disease. The existing systems on disease detection is not efficient enough in terms on real time basis. This paper presents an effective method for identification of paddy leaf disease. The proposed approaches involves pre-processing of input image and the paddy plant disease type is recognized using Gray-Level Co-occurrence Matrix (GLCM) technique and classifiers namely Artificial Neural Networks is used for better accuracy of detection. This method will be very useful to farmers to detect paddy diseases beforehand and thus prevent over usage of pesticides which in turn affects the crop production

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of Rice-Plant Images into Healthy/Disease Class using ResNetV2 Variants;2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES);2023-12-14

2. Enhanced Sea Horse Optimization with Deep Learning-based Multimodal Fusion Technique for Rice Plant Disease Segmentation and Classification;Engineering, Technology & Applied Science Research;2023-10-13

3. The Influence of UHPFRC Jacket Steel Fiber Content on Strengthening Damaged Columns;Engineering, Technology & Applied Science Research;2023-10-13

4. A Deep Convolutional Neural Network for Leaf Disease Detection of Sugarcane;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

5. Resource Prudent CNN Models for Disease Identification of Rice Crops;2023 International Conference on Networking and Communications (ICNWC);2023-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3