Imaging & Machine Learning Techniques Used for Early Identification of Cancer in Breast Mammogram

Author:

Abstract

Breast cancer has become a major concern of women health throughout the world and has an important cause of death among women. The important radiographic signs of cancer are the masses visible in the breast. In the initial stage, the masses in the women breast are very strenuous to detect. In many cases, it has been proven that a manual attempt of treatment methods are time consuming and inefficient. Hence there is a basic demand for well-planned methods for diagnosis of the cancerous cells with minimal human participation resulting high in precision. Mammography has been proven as an efficient technique for the identification of cancer in women breast. Automated detection of masses in breast mammogram is the major goal in the identification of cancer in women breast. Machine learning techniques can be used as an effective mechanism by the physician for the early detection of cancer in the breast. By early recognition of malignancy in the breast, patients will get treatment right from the initial stage of cancer which can save their lives.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Watershed Algorithm in Digital Image Processing;Proceedings of the 6th International Conference on Advance Computing and Intelligent Engineering;2022-09-22

2. Autoencoder: An Unsupervised Deep Learning Approach;Emerging Technologies in Data Mining and Information Security;2022-09-16

3. IoT for Smart Healthcare: Opportunities, Challenges and Technology;2022 International Conference on Machine Learning, Computer Systems and Security (MLCSS);2022-08

4. A hybrid machine learning model for timely prediction of breast cancer;International Journal of Modeling, Simulation, and Scientific Computing;2022-06-25

5. Application of Big Data Problem-Solving Framework in Healthcare Sector—Recent Advancement;Smart Innovation, Systems and Technologies;2020-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3