An Improved Smart Traffic Signal using Computer Vision and Artificial Intelligence

Author:

Abstract

The growth in population all over the world and in particular in India causes an increase in the number of vehicles which, create complications regarding traffic jam and traffic safety. The primary solution to recover the jam condition is the expansion of capacities of roads by building new streets. However, this requires extra efforts and more time that is a costly and ineffective solution. Therefore, there is a need for alternative solution methodologies that are being implemented. Intelligent traffic monitoring is a branch of intelligent transportation systems that focuses on improving traffic signal conditions. The key goal of such an intelligent monitoring system is to improve the traffic system in a way that reduces delays. Many cities facing these delays because of the inefficient configuration of traffic light systems which are mostly fixed-cycle protocol based. Therefore, there is a profound need to improve and automate these traffic light systems. The establishment of a mixed technique of artificial intelligence (AI) and computer vision (CV) can be desirable to develop an authenticated and scalable traffic system which can aid to solve such problems. Proposed work supports the use of computer vision technology to build a resource-efficient, synchronous and automated traffic analysis. Video samples were collected from multiple areas to use in the system. The system applied and the vehicle was counted and classified into different classes. Manually and automatically annotated patterns were used for the classification. The multi-reference-line mechanism employed to find the speed of the vehicle and analyze traffic. The system makes its decision based on a number of vehicles, backwards-forward synchronous data and emergency conditions.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Traffic Signal Scheduling using Machine Learning;International Journal of Recent Technology and Engineering (IJRTE);2023-03-30

2. Artificial Intelligence-Based Vehicle Recognition Model to Control the Congestion Using Smart Traffic Signals;Smart Technologies in Data Science and Communication;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3