INNOVATIVE LIPIDIC NANOCARRIERS OF FLUTAMIDE ENHANCING ITS IN VITRO CYTOTOXICITY AND IN VIVO ORAL BIOAVAILABILITY: DESIGN, OPTIMIZATION, CHARACTERIZATION, AND PHARMACOKINETIC ASPECTS

Author:

A. ALI MOHAMED,MOHAMED MAGDY I.ORCID,M. EL-SAY KHALIDORCID,MEGAHED MOHAMED A.ORCID

Abstract

Objective: the reduced oral bioavailability of Flutamide has hindered its effectiveness as a chemotherapeutic agent for prostate cancer treatment. Our study aimed to enhance FLUTAMIDE in vitro cytotoxicity and oral bioavailability via its incorporation into lipid nanocarriers that contained solid lipid (Precirol®) alone or in combination with anti-androgenic oils such as Saw Palmetto Oil (SPO) and Pumpkin Seed Oil (PSO). Methods: we employed the Box Behnken Design (BBD) to optimize Flutamide-loaded nanocarriers, focusing on mean vesicular size, zeta potential, and entrapment efficiency. Results: the optimized nanovesicles exhibited dimensions of 330.2 nm, a zeta potential of -43.1 mV, and an entrapment efficiency of 66.1%. Morphological analysis using Transition Electron Microscope (TEM) and Scanning Electron Microscope (SEM) confirmed the spherical shape of the nanovesicles. Differntial Scanning Calorimetry (DSC) thermograms and X-ray diffractograms indicated decreased crystallinity of encapsulated Flutamide compared to free Flutamide. In vitro cytotoxicity studies demonstrated enhanced effects against prostate cancer cells (PC-3) for optimized Flutamide-loaded nanocarriers containing the 2 anti-androgenic oils over both nanocarriers containing no oils and free Flutamide suspension. In vivo pharmacokinetic analysis in male rats showed increased oral bioavailability for flutamide-loaded nanocarriers with Cmax values of 559.35±41.79 ng/ml and 670.9±24.61 ng/ml for different formulations compared to the free flutamide suspension with a Cmax value of 281.4±94.33 ng/ml. Conclusion: These findings support FLUTAMIDE oral bioavailability improvement through nanocarriers encapsulation, advocating its utilization in prostate cancer therapy and approving the additive anti-androgenic effect after its combination with SPO and PSO.

Publisher

Innovare Academic Sciences Pvt Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3