SOLUBILITY ENHANCEMENT OF ATAZANAVIR BY HYDROTROPIC SOLUBILIZATION TECHNIQUE

Author:

KRISHNAN VIJAYARAGAVANORCID,DHANDAPANI THAMARAI SELVANORCID,SEENIVASAN RAAGULORCID,R. SARVESH,M. P. SUKESHAN,C. A. SARAVANA KUMARORCID,VENKATESH DHANDAPANI NAGASAMYORCID

Abstract

Objective: The present study aims to increase the solubility and dissolution of atazanavir sulfate (ATZ) by employing a hydrotropic solubilization technique. Methods: ATZ is a poorly soluble drug classified under the biopharmaceutical classification system (BCS)-II, which accounts for its poor oral bioavailability. Different hydrotropic agents, such as urea and sodium benzoate and their combinations at different ratios were prepared. The prepared hydrotropes were systematically investigated for compatibility between the drug and excipients using Fourier Transform Infra-Red Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) approaches. Further, in order to understand the conversion from crystalline to amorphous nature, X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) studies were also performed. The formulation of a mixed hydrotropic mixture comprising urea (2.5% w/v) and sodium benzoate (5% w/v) exhibited a 100.35±1.7 % drug release at 0.25 h with higher dissolution efficiency as compared with other batches of individual hydrotrope, mixed hydrotropes as well as pure drug. Results: FTIR studies revealed that there is no incompatibility between the drug and the selected hydrotropes. DSC studies also confirmed the fact that there is no interaction between the drug and the hydrotropes by the disappearance of an endothermic peak. XRD studies revealed that there was a significant reduction in the intensity of peaks, indicating the conversion of crystalline to the amorphous form. The SEM studies indicated that the drug appears crystalline in the shape of an irregular tiny prismatic needle, indicating its crystallinity. At the same time, the hydrotrope mixtures appeared in agglomerated form with a porous nature, which may be accountable for its increase in solubility. The hydrotropes prepared using urea alone exhibited an increase in solubility of 4.42 folds, and the hydrotrope prepared using sodium benzoate alone exhibited an increase in solubility of 3.178 folds; the combination hydrotropes of urea and sodium benzoate exhibited an increase in solubility of 8.78 folds in water as compared to pure drug. The drug release from the mixed hydrotropes obeys zero-order kinetics with diffusion as the main mechanism. Conclusion: The present investigation concluded that the combination of hydrotropes enhanced the solubility of the aqueous soluble drug ATZ. However, in vivo studies are essential to establish its potential effect.

Publisher

Innovare Academic Sciences Pvt Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3