MOLECULAR DOCKING OF THE KERUING's (DIPTEROCARPUS) GENUS, SECONDARY METABOLITES OF THE DIPTEROCARPACEAE FAMILY'S AS ANTI-INFLAMMATION AGAINST CYCLOOXYGENASE-2 (COX-2)

Author:

RYANT AGUS ADHE SEPTAORCID,SISWANDONO ,TRESIA BUTAR-BUTAR MARIA ELVINAORCID,TAUFIQURRAHMAN MUH.,FERNANDES ANDRIANORCID,MAHARANI RIZKI

Abstract

Objective: Kalimantan, Indonesia, has a tropical forest abundant in forest products. One of these products is the Dipterocarp tree, which includes the Keruing genus (Dipterocarpus). Dipterocarpus contains secondary metabolites that may be potential sources for new drug compounds. One of these metabolites has the potential to act as an anti-inflammatory agent. Based on pharmacophore modelling and molecular docking, this study used molecular docking to investigate the inhibitory mechanism and affinity of Dipterocarpus secondary metabolites on the 3N8Y inflammatory receptor. Methods: The study involved multiple stages, such as preparing and optimizing the structure of the test compounds, constructing a 3D receptor structure of 3N8Y, validating the methodology, and performing energy docking simulations to analyze the interactions. From the study that has been done, the results for the test compounds were evaluated for their MolDockScore, Pharmacokinetic parameters (ADME), and toxicity. Results: The results revealed that the oligomer resveratrol compound exhibited the lowest MolDockScore value of-104.7400, comparable to natural ligands. In addition to that, this method produces reliable outcomes through pharmacokinetic predictions such as HIA (88.4794%), Caco2 (5.1917 nm/sec), and PPB (100%). Furthermore, the toxicity profile exhibited negative results for mutagenic, non-mutagenic, and carcinogenic tests, including genotoxic and nongenotoxic substances. Conclusion: The oligomeric resveratrol (3',5',4-trihidroksi-trans-stilben) compounds have potential as anti-inflammatory agents by acting on the 3N8Y receptor, which further needs to be tested in vivo.

Publisher

Innovare Academic Sciences Pvt Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3