INVESTIGATION OF ANTI-SARS COV-2 ACTIVITY OF SOME TETRAHYDRO CURCUMIN DERIVATIVES: AN IN SILICO STUDY

Author:

MURALIKRISHNAN AMRITAORCID,KUBAVAT JASMINORCID,VASAVA MAHESHORCID,JUPUDI SRIKANTHORCID,BIJU NAMITHAORCID

Abstract

Objective: In the current study, an in silico approach has been utilized to investigate the anti-SARS CoV 2 activity of some derivatives of Tetrahydro curcumin (THC), a curcumin metabolite. Methods: BioVia Draw 2017 was used to design 168 THC derivatives. All of the derivatives were docked using Maestro Schrodinger programme. Depending on the docking score, the ADME, drug-likeness, and toxicity prediction of a few THC derivatives were conducted. Results: 168 THC derivatives were designed. 14 derivatives exhibited a better binding score than Remdesivir. All 14 derivatives' pharmacokinetic characteristics were discovered to be within the acceptable range. Lipinski's rule of five was violated by all derivatives, including the reference drug, yet they all stayed within the recommended range. The greatest docking score among the 14 derivatives was displayed by Structure 21. A study on molecular dynamic (MD) stimulation showed that the protein-ligand complex was relatively stable. Toxicity prediction showed that 14 derivatives were non-hepatotoxic, non-cytotoxic, immunotoxic (except S21), non-mutagenic (except S31) and half of the developed structures were carcinogenic, while the other half, including the standard drug, was non-carcinogenic. Conclusion: Among 168 THC derivatives, 14 derivatives exhibited better binding score than the reference drug. For all 14 derivatives, pharmacokinetic, drug-likeness, and toxicity prediction were found to be satisfactory. It was discovered that the protein-ligand complex was thermodynamically stable. All 14 compounds present exciting prospects for further in vitro and in vivo investigation.

Publisher

Innovare Academic Sciences Pvt Ltd

Subject

Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3