ENHANCED AQUEOUS SOLUBILITY AND IN VITRO DISSOLUTION OF THE ANTI-HYPERLIPIDEMIC AGENT USING SYNTHESIZED SOLID DISPERSION CARRIER

Author:

TELANGE DARSHAN R.ORCID,AGRAWAL SURENDRA S.ORCID,PETHE ANIL M.ORCID,HADKE ANKITA V.ORCID

Abstract

Objective: To improve ATN's solubility, permeability, and dissolution rate of pentaerythritol-eudragit®RS100 co-processed excipients (CE) and their potential as a solid dispersion carrier (ATN-CE-SD). Methods: The ATN-CE-SD was prepared using the solvent evaporation technique. The pure ATN, physical mixture, CE carrier, and optimized ATN-CE-SD was physicochemically characterized using Scanning electron microscopy, Fourier transforms infrared spectroscopy, differential scanning calorimetry, powder x-ray diffractometry, solubility, and in vitro dissolution was used to evaluate solid dispersions. Results: Physical and chemical analysis showed that ATN-CE-SD formed via the involvement of weak intermolecular forces of attraction between CE carrier and ATN. The prepared solid dispersion showed the drug content around ~ 96.94 % w/w, indicating that the solvent evaporation method improved the encapsulation of ATN and, thus, enhanced its drug content. Compared to pure ATN (~ 0.11 mg/ml), ATN-CE-SD (1:2) significantly increased the aqueous solubility by around ~ 25-fold (~ 2.78 mg/ml), indicating solid dispersion improves the solubility of ATN. ATN-CE-SD enhanced the rate of dissolution of ATV (~ 65 %) compared to pure ATN (~ 25 %) and PM (~ 34 %). Likewise, ATN-CE-SD (1:2) improved the rate and extent of ATN (~ 60 %) across the biological membrane compared to pure ATN (~ 22 %) and PM (~ 32 %). The ATN-CE-SD (1:2) improved the dissolution efficiency by around ~ (57.31%) compared to pure ATN (~ 7.02%) and PM (~ 20.43%). According to the study, co-processed excipients could serve as a promising solid dispersion carrier and improve ATN's water solubility, permeability, and dissolution rate. Conclusion: Based on the results, it is possible to use synthetic solid dispersion carriers as alternatives to improve the low water solubility and permeability of ATN.

Publisher

Innovare Academic Sciences Pvt Ltd

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3