DEVELOPMENT AND OPTIMIZATION OF SUPER SATURABLE SELF-NANO EMULSIFYING DRUG DELIVERY SYSTEM FOR DASATINIB BY DESIGN OF EXPERIMENT

Author:

RAJINIKANTH C.ORCID,KATHIRESAN K.ORCID

Abstract

Objective: In current research, Self-Nanoemulsifying Super Saturable Drug Delivery Systems S‑SNEDDS was formulated to attain superior drug dissolution and stability. Methods: Using saturated solubility, capryol ® 90, cremophor®-EL, and transcutol HP were used to make S-SNEDDS. Its composition was optimized using the ternary phase diagram. Using the central composite design of Response Surface Methodology, dasatinib-SNEDDS developed responses for droplet size (Y1), polydispersity index (Y2), and % drug released in 15 min (Y3). Various Precipitation Inhibitors were added to optimize SNEDDS (S3) to make S-SNEDDS and evaluate. Results: The optimum formulation was S3, with a particle size of 128 nm and zeta potential of-21 mV. Methylcellulose was shown better supersaturation than other inhibitors. The optimized formulation (F3) was more stable than ordinary SNEDDS due to its more significant zeta potential (-25 mV) and lower particle size (128 nm). Dasatinib was shown to be amorphous in S-SNEDDS using Differential Scanning Calorimetry and X-ray Powder Diffraction. F3 had a higher 90 min release rate (>99%) than pure drug dispersion (26%) and SNEDDS formulation (95%). Conclusion: The results concluded that S-SNEDDS formulation successfully enhanced the dissolution and stability of dasatinib.

Publisher

Innovare Academic Sciences Pvt Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3