CHIRAL SWITCHING CONTROL OF PHARMACEUTICAL SUBSTANCES

Author:

LEVITSKAYA OLGA V.,PLETENEVA TATIANA V.ORCID,GALKINA DARIA A.ORCID,KHODOROVICH NADEZDA A.ORCID,USPENSKAYA ELENA V.,SYROESHKIN ANTON V.ORCID

Abstract

Objective: The aim of this study was to demonstrate that chiral switching should be recognized as a widespread phenomenon that extends beyond the production of pure enantiomeric drugs. Methods: To investigate the optical activity of substances from various chemical classes, enantiomers of chiral compounds (Sigma-Aldrich, USA) were chosen: valine and its racemic form (D-valine, L-valine, and racemic valine with optical purity ≥ 99%), L-ascorbic acid (content ≥ 99%), carbohydrates (D-glucose, D-galactose, L-galactose, contents ≥ 99.5%). Solutions were prepared using deuterium-depleted water (DDW–"light" water, D/H=4 ppm), natural deionized high-ohmic water (BD, D/H=140 ppm), and heavy water (99.9% D2O; Sigma-Aldrich). Optical activity was measured using the Atago POL-1/2 polarimeter. Results: One of the components in the racemic medication mixture can act as an inert agent, exhibit toxicity, or undergo undesirable biotransformation mechanisms, resulting in the formation of products with unknown properties. It has been established that a change in the deuterium/protium (D/H) ratio in water leads to a change in the equilibrium and kinetic characteristics of optically active compounds across various chemical classes, such as amino acids, carboxylic acids, and carbohydrates. An inequality was observed in the absolute values of the optical rotation of the L-and D-isomers of valine and galactose, depending on the D/H isotope ratio. The impact of chiral water clusters on optical rotation accounts for the sudden shift in the specific rotation of dilute solutions (less than 0.5%) of L-ascorbic acid in water, based on the D/H ratio. The influence of the isotopic composition of water was confirmed by studying the temperature-dependent mutarotation kinetics of D-glucose and L-and D-galactose in Arrhenius coordinates. The mutarotation process in natural high-resistivity water is characterized by an activation energy (Ea) of 40.8±1.4 kJ mol-1, while in deuterium-depleted water, Ea = 63.6±3.5 kJ mol-1. This results in a kinetic isotope effect for deuterium (KIED) of 1.6. Conclusion: Methodological approaches have been developed to control chiral switching based on the isotopic composition of water in vivo and in vitro. The study of changes in the optical activity of hierarchical structures in the human body, the influence of solvent properties on the mechanisms of optical rotation, as well as the use of KIED values, can be utilized to monitor various chiral transitions in vitro and living organisms.

Publisher

Innovare Academic Sciences Pvt Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3