SINUSOIDAL ELECTROMAGNETIC FIELD DECREASES OSTEOGENIC DIFFERENTIATION OF RAT BONE MARROW MESENCHYMAL STEM CELLS

Author:

ALTEMEMY DHIYAORCID,GHASEM KASHANI MARYAM HAJI,N. WENAS OSAMAH

Abstract

Objective: The widespread use of household electrical appliances generating electric and magnetic fields was a significant focus of WHO attention because of its serious threat to human health, especially osteogenesis. This research investigated the effect of 50 Hz frequency (1 mT intensity) sinusoidal EMF (SEMF) on the osteogenic differentiation of rat bone marrow stem cells (rBMSCs) in vitro. Methods: Experimental groups were: positive control (cells cultured in osteogenic medium supplemented with 7-10 M Dexamethasone, negative control (cells cultured in α-MEM/10% FBS, 10 mmol Beta-Glycerol-Phosphate, 15% FBS, 50 ug/ml Ascorbic Acid bi-Phosphate, 100 unit/ml Penicillin) and for the EMF group, cells exposed to SEMF (50 Hz, 1 mT, 30 min/day) for 14 and 21 d. Alizarin red staining, Alkaline phosphatase activity, and QRT-PCR were performed. Results: The EMF group exhibited weaker positive stains for ALP and Alizarin red than the positive control group. The Runx2 and Ocn gene expression levels were significantly decreased compared to negative control at 14 and 21 d of EMF exposure, respectively. After 14 and 21 d of exposure, Runx2 and Ocn gene expression were much lower in the EMF group than in the positive control group. Conclusion: SEMF (1 mT, 50 Hz, 30 min/day) could retarded osteogenesis and reduce the osteogenic differentiation of rBMSCs.

Publisher

Innovare Academic Sciences Pvt Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3