DESIGN FOR THE COLON CANCER INHIBITORS TARGETING THYMIDYLATE KINASE BY USING INSILICO STUDIES

Author:

BAQI MOHD ABDULORCID,JAYANTHI KOPPULAORCID,RAJESHKUMAR RAMAN

Abstract

Objective: Thymidylate Kinase (TMK) plays a crucial role in bacterial DNA synthesis by catalyzing the phosphorylation of Deoxythymidine Monophosphate (dTMP) to form Deoxythymidine Diphosphate (dTDP). Consequently, this enzyme emerges as a promising target for developing novel anti-cancer drugs. However, no anti-cancer drugs have been reported for this target until now. Methods: Ligands obtained from Benzylidene derivatives were examined for their potency by using molecular docking by glide module, Qikprop screening of Absorption, Distribution, Metabolism, and Excretion (ADME) study, and prime Molecular Mechanics in Generalized Bond Surface Area study (MM-GBSA) by binding free energy. Hereafter, a Molecular Dynamic (MD) simulation was performed at 100 ns to assess the stability of the potential ligand as a Human TMK (HaTMK) inhibitor. Results: These ten molecules showed good binding affinity and hydrogen and hydrophobic bond interactions with Arg150, Phe42, and Phe72 in the HaTMK enzyme (PDB id: 1E2D). Among them, trichloro-6-(((4-hydroxyphenyl)imino)methyl)phenol molecule had a high XP-docking score of (−7.87 kcal/mol), based on extra-precision data. Prime MM-GBSA studies also showed promising binding affinities i.e., ΔBind (-34.59 kcal/mol), ΔLipo (-13.92 kcal/mol), and ΔVdW (-34.42 kcal/mol). Arg76 and Phe72 residues maintained constant interactions with the ligand during Molecular Dynamics (MD) simulation. This ligand showed a potential binding affinity for the TMK target. Conclusion: The trichloro-6-(((4-hydroxyphenyl)imino)methyl)phenol ligand has active sites, namely benzene ring, benzylidene, and oxygen group, which actively participate in interaction with the protein of HaTMK, thus indicating good potential activity as the inhibitor of HaTMK to treat colon cancer.

Publisher

Innovare Academic Sciences Pvt Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3