LIPID AND SURFACTANT-BASED PHYTOFORMULATION FOR AMELIORATION OF INFLAMMATION

Author:

RAUT ROOPAMORCID,SHAJI JESSYORCID

Abstract

Objective: Observations from traditional medicine and findings of modern science recommend use of curcuminoids and piperine in inflammatory ailments such as rheumatoid arthritis. Therapeutic potential of these phytoconstituents cannot be exploited to the maximum extent because of poor solubility and low bioavailability. The objective of this study was to overcome these challenges and harness the potential of these phytoconstituents by developing lipid and surfactant-based formulations. Methods: A microemulsion was prepared by selecting lipids, surfactants and cosurfactants on the basis of the solubility and stability of phytoconstituents. It was further converted into a transparent gel for topical application. The phytoformulation was characterized by physicochemical tests. Its hemocompatibility and irritation potential was determined. Further phytoformulation was studied in RAW 264.7 cells for cell internalization and antiarthritic potential was investigated in Complete Freund’s Adjuvant (CFA) induced arthritic rats. The disease progression was recorded. At the end of the study hematological, biochemical and oxidative stress parameters were measured. Results: A stable phytoformulation containing 0.75% w/w curcuminoids and 0.25% w/w piperine was developed. At the end of 24 hours, the amount of curcuminoids and piperine permeated through the skin from phytoformulation was 4.38 and 1.38 times that of the oil. It had good hemocompatibility and poor irritation potential. Internalization of phytoformulation in RAW 264.7 cells was concentration dependent. There were significant changes in rats due to disease induction by CFA and results indicated regression of the disease progress due to phytoformulation. Conclusion: Lipid and surfactant-based formulation improved solubility and permeability of phytoconstituents. The developed phytoformulation could recover inflammatory changes in rats and it can be further studied in human beings.

Publisher

Innovare Academic Sciences Pvt Ltd

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3