PREDICTION OF THE EFFECT OF SINGLE NUCLEOTIDE POLYMORPHISMS (SNPS) IN THE CYP2C9 ON WARFARIN METABOLISM BY IN SILICO STUDY

Author:

PUTRIANA NORISCA ALIZA,RUSDIANA TAOFIK,ROSTINAWATI TINA,AKBAR MOHAMMAD RIZKI,MEGANTARA SANDRA,HIDAYANTI SABRANAH

Abstract

Objective: This study aimed to predict the effect of SNPs CYP2C9 s on the metabolic activity of S-warfarin in the body. Methods: Molecular modeling was performed to obtain SNPs CYP2C9 and molecular docking was performed to predict the effect of SNPs CYP2C9 on the metabolic activity of S-warfarin. Results: The results showed that wild-type CYP2C9 had the strongest binding affinity (∆G: -9.76 kcal/mol), indicating that wild-type CYP2C9 had the best metabolic activity compared to SNPs CYP2C9. There was a decrease in hydrogen bond formation in SNPs CYP2C9 and an increase in the distance between C7 S-warfarin and Fe-Heme in CYP2C9 SNPs when compared to wild-type CYP2C9 Conclusion: The decrease in binding affinity, decrease in hydrogen bond formation, and an increase in the distance between C7 S-warfarin and Fe-Heme on SNPs CYP2C9 indicated that SNPs CYP2C9 had decreased metabolic activity against S-warfarin which led to an increased risk of bleeding.

Publisher

Innovare Academic Sciences Pvt Ltd

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3