Author:
Reddy B. H. Nanjunda,Rauta Pradipta Ranjan,Lakshmi V. Venkata,Sreenivasa Swamy
Abstract
Objective: The objective of this study was to develop, formulate and evaluate the sodium alginate grafted poly (acrylamide-co-acrylic acid/cloisite-30B/silver nanoparticle hydrogel composites (SA-PAAm-PAAc/C30B/AgNPs) with varying weight percentage (wt %) of cloisite-30B clay for paclitaxel targeted delivery and anticancer activity.
Methods: Polymer hydrogel composites of different wt % of cloisite-30B modified clay dispersed sodium alginate (SA) grafted polyacrylamide-co-polyacrylic acid were prepared via in situ free radical initiation polymerization reaction technique. In vitro release of paclitaxel (PT) anticancer drug and anticancer studies were performed. The formulations were further evaluated for swelling, drug encapsulation, drug delivery, anticancer activity study, Fourier transforms infrared spectroscopy (FT-IR), thermogravimetric (TGA), differential scanning calorimeter (DSC) and x-ray diffraction (XRD) characterizations.
Results: FT-IR spectroscopy of various composite hydrogel formulations displayed good compatibility between sodium alginate, polyacrylamide, and polyacrylic acid polymers. The thermal study reveals that the formulations with clay (C30B) and AgNPs in hydrogel composites exhibit good thermal stability and less % of weight loss (wt. loss) compared to pure formulations. Further, the highest encapsulation efficiency was shown by the formulation S0-0+D (72.66±5.92%) and least encapsulation efficiency was shown by S75Ag+D (41.33±3.12%) compared to rest of the formulations and S50Ag+D and S75Ag+D samples exhibits relatively slightly higher and sustained cumulative release rate of PT drug at an average rate of 80±9 % within 72 h and also shows relatively better anticancer activity compared to other formulations.
Conclusion: Formulations S50Ag+D and S75Ag+Dwere found to be best formulations with a higher cumulative percentage of PT drug release and showed better anticancer activity
Publisher
Innovare Academic Sciences Pvt Ltd
Reference33 articles.
1. Kulkarni PV, Keshavayya J. Preparation, and evaluation of polyvinyl alcohol transdermal membranes of salbutamol sulfate. Int J Curr Pharm Res 2010;2:29-32.
2. Khurana IS, Kaur S, Kaur H, Khurana RK. The multifaceted role of clay minerals in pharmaceuticals. Futuristic OA 2015;1:FS06.
3. Parida UK. Synthesis and characterization of chitosan-polyvinyl alcohol blended with cloisite 30B for controlled release of the anticancer drug curcumin. J Biomater Nanobiotechnol 2011;2:414–25.
4. Vimala K, Yallapu MM, Varaprasad K, Reddy NN, Ravindra S, Naidu NS, et al. Fabrication of curcumin encapsulated chitosan-PVA silver nanocomposite films for improved antimicrobial activity. J Biomater Nanobiotechnol 2011;2:55–64.
5. Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ. Nanoparticle–hydrogel composites. Concept, design, and applications of these promising, multi-functional materials. Adv Sci 2015;2:1–13.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献