BIOSYNTHESIS OF COPPER OXIDE NANOPARTICLES AND EVALUATION OF THEIR ANTIMICROBIAL PROPERTIES

Author:

OKOYE UCHENNA CHRISTIANORCID,OKHAMAFE AUGUSTINE O.ORCID,ARHEWOH MATTHEW IKHUORIAORCID

Abstract

Objective: This research was carried out to synthesize and characterize copper oxide nanoparticles (CuONPs) using Vernonia amygdalina leaf extract and investigate the in vitro antimicrobial properties using clinical microbial isolates. Methods: The CuONPs were synthesized by heating a mixture of copper sulfate pentahydrate and V. amygdalina aqueous extract. The CuONPs were characterized by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and particle size analysis. Phytochemical analysis of V. amygdalina was carried out to determine the bio-molecules that served as a reducing agent during the synthesis of CuONPs. The antimicrobial activities of CuONPs and V. amygdalina were evaluated by the agar disc diffusion method against Staphylococcus aureus, Escherichia coli, and Candida albicans. Ampicillin and fluconazole were used as reference antibacterial and antifungal agents, respectively. Results: The nanoparticles were in the nanometer dimension and exhibited significant antimicrobial activity (P<0.05) against the tested microbes. However, the standard antibacterial drug, ampicillin, showed higher antibacterial activity against S. aureus and E. coli with the inhibition zone diameter of (IZD) of 13.10±0.38 mm and 11.80±0.12 mm, respectively. Fluconazole had no antifungal activity against C. albicans while V. amygdalina demonstrated good antibacterial activity against S. aureus and E. coli but lacked antifungal activity against C. albicans. However, the combination of CuONPs and plant extract exhibited significant antifungal activity with an IZD of 10.37±0.72 mm. Conclusion: An eco-friendly, simple, reproducible, and economical CuONPs have been synthesized using V. amygdalina leaf extract. The findings indicate that CuONPs could be used as an antimicrobial agent.

Publisher

Innovare Academic Sciences Pvt Ltd

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3