COMPARATIVE ANALYSIS OF SMALL MOLECULES AND NATURAL PLANT COMPOUNDS AS THERAPEUTIC INHIBITORS TARGETING RdRp AND NUCLEOCAPSID PROTEINS OF SARS COV 2: AN IN SILICO APPROACH

Author:

POLEBOYINA PAVAN KUMARORCID,PAWAR SMITA C

Abstract

Objective: Coronavirus disease 2019 (COVID-19) is a virus-borne infection caused by the severe acute respiratory syndrome coronavirus disease-2 (SARS-CoV-2) virus. Nucleocapsid protein and RNA-dependent RNA polymerase (RdRp) activity in viral structural membrane, transcription, and replication have been identified as desirable targets for the development of novel antiviral strategies. The SARS-COV-2 N protein binds to the viral genome to promote the precise folding of the hammerhead ribozyme, preventing ineffective RNA confirmations, and directs them into a helical capsid shape or ribonucleoprotein complex, which is vital for viability. RNA synthesis requires RdRp to form phosphodiester bonds based on the RNA template. SARS-CoV-2 RNA synthesis, transcription, and replication depend on RdRp’s complex with nsp7 and nsp8. Methods: Our study targeted SARS-COV-2 RdRp and N proteins with natural plant compounds and small molecules. Hyperchem software optimized their structures geometrically and energetically. Based on MolDock, Rerank, and H-bonding energy, the best ligands were selected using the Molegro virtual docker. Results: In our analysis, we have identified nine compounds against N protein and seven compounds against RdRp protein that had more potent inhibitory effects with the lowest MolDock scores. The top 6 (Alpha solanine, Betanin, cairicoside I, Ginsenoside rb 1, Naringin, Polyphyllin I) compounds that have better inhibitory effects against both proteins. Conclusion: We conclude that the top six compounds have greater inhibitory efficacy against N and RdRp protein than other compounds. However, in vitro and in vivo experimental studies, as well as clinical trials, are required to achieve the desired result.

Publisher

Innovare Academic Sciences Pvt Ltd

Subject

Pharmacology (medical),Pharmaceutical Science,Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ANTIVIRAL ACTIVITY OF SAUSSUREA LAPPA ETHANOL EXTRACT AGAINST SARS-COV-2: IN VITRO STUDY;International Journal of Applied Pharmaceutics;2024-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3