Author:
J Sharath Kumar,N Maheswari
Abstract
In this era of 20th century, online social network like Facebook, twitter, etc. plays a very important role in everyone’s life. Social network data, regarding any individual organization can be published online at any time, in which there is a risk of information leakage of anyone’s personal data. So preserving the privacy of individual organizations and companies are needed before data is published online. Therefore the research was carried out in this area for many years and it is still going on. There have been various existing techniques that provide the solutions for preserving privacy to tabular data called as relational data and also social network data represented in graphs. Different techniques exists for tabular data but you can’t apply directly to the structured complex graph data,which consists of vertices represented as individuals and edges representing some kind of connection or relationship between the nodes. Various techniques like K-anonymity, L-diversity, and T-closeness exist to provide privacy to nodes and techniques like edge perturbation, edge randomization are there to provide privacy to edges in social graphs. Development of new techniques by Integration to exiting techniques like K-anonymity ,edge perturbation, edge randomization, L-Diversity are still going on to provide more privacy to relational data and social network data are ongoingin the best possible manner.
Publisher
Innovare Academic Sciences Pvt Ltd
Subject
Pharmacology (medical),Pharmaceutical Science,Pharmacology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献