31. Trade-Offs between Mortality Components in Life History Evolution

Author:

Pavard Samuel1ORCID,Metcalf C. Jessica E.22ORCID

Affiliation:

1. National Museum of Natural History

2. Princeton University

Abstract

Little is known about the relative importance of different causes of death in driving the evolution of senescence and longevity across species. Here we argue that cause-specific mortality may be shaped by physiological trade-offs between mortality components, challenging the theoretical view that physiologically independent processes should senesce at the same rate, or that interactions between causes of death will make selection blind to the effects of specific causes of death. We review the evidence that risk of cancers trades off with risks of mortality from other diseases, and investigate whether this might explain two of the most puzzling paradoxes in cancer evolution. First, among species, cancer prevalence is not a function of species’ size and longevity, despite the fact that cancer incidence is known to be a function of the number of cell divisions (and therefore of size) by unit of time (and therefore of longevity). Second, within species, despite the fact that genomic instability is thought to be the proximal cause of both cancer incidence and senescence, mortality rates rise with age while cancer incidence decelerates and declines at old ages. Building on a relatively novel theory from cellular biology, we construct a preliminary model to reveal the degree to which accumulation of senescent cells with age could explain this latter paradox. Diverting damaged stem cells towards a senescent-state reduces their risk of becoming tumorous; however, conversely, the accumulation of senescent cells in tissues compromises their rejuvenation capacity and functioning, leading to organismal senescence. Accumulation of senescent cells with age may then be optimal because it reduces cancer mortality at the cost of faster senescence from other causes. Evolution will drive species towards a balance between these two sources of mortality.

Publisher

Open Book Publishers

Reference106 articles.

1. Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage in Humans;Abegglen, Lisa M.; Caulin, Aleah F.; Chan, Ashley; Lee, Kristy; Robinson, Rosann; Campbell, Michael S.; Kiso, Wendy K.; Schmitt, Dennis L.; Waddell, Peter J.; Bhaskara, Srividya; Jensen, Shane T.; Maley, Carlo C.; Schiffman, Joshua D.;JAMA,2015

2. Cancer across the tree of life: cooperation and cheating in multicellularity;Aktipis, C. Athena; Boddy, Amy M.; Jansen, Gunther; Hibner, Urszula; Hochberg, Michael E.; Maley, Carlo C.; Wilkinson, Gerald S.;Philosophical Transactions of the Royal Society B: Biological Sciences,2015

3. Getting old and cancer: hand-in-hand?;Alderton, Gemma;Nature Reviews Cancer,2007

4. Comparison of Age Distribution Patterns for Different Histopathologic Types of Breast Carcinoma;Anderson, William F.; Pfeiffer, Ruth M.; Dores, Graça M.; Sherman, Mark E.;Cancer Epidemiology, Biomarkers & Prevention,2006

5. Cancer in rodents: does it tell us about cancer in humans?;Anisimov, Vladimir N.; Ukraintseva, Svetlana V.; Yashin, Anatoly I.;Nature Reviews Cancer,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3