Analysis of the Influents of Cutting Parameters in Drilling GFRP Composites Using Taguchi Method

Author:

Naemah Iman

Abstract

Carbon Fiber Reinforced Plastic (CFRP) is widely employed today, mainly in industries, due to its required properties of high corrosion resistance, high strength, and lightweight, this work studies the influence of the cutting parameters on the surface roughness by drilling two types of carbon-fiber-reinforced polymer composite material (CFRP) Composites 0° angle and 90° angle, the investigated of the drilling of CFRP by using an experimental design based on the Taguchi L18 orthogonal array. Spindle speed, feed rate, and tool diameter were the input parameters, and surface roughness was the output. The cutting settings (410, 806, and 1003) rpm and two different HSS tools were employed in the drilling operation of the CFRP composite. The feed rates used were (0.1, 0.2, and 0.3) mm/rev (at 10 and 12 mm in diameter). The Taguchi approach, the cutting speed, feed rate, and tool diameter were optimized to be 1003 rpm spindle speed, 0.1 mm/rev feed rate, and 10 mm, respectively, at a 0° angle, the surface roughness was 2.74 µm, while at a 90° angle, 4.12 µm, surface roughness was created by the Taguchi optimization of the surface for the cutting variables. According to the ANOVA analysis of the surface roughness (Ra) for CFRP/0-angles, The P-value of the factor feed rate was 0.044 less than 0.05, while the p-values of the tool diameter and spindle speed were greater than 0.05. At the CFRP/90-angle, the p-values of the factors feed rate and spindle speed were both less than 0.05, while the p-value of the tool diameter was 0.208.

Publisher

University of Diyala, College of Science

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3