Author:
Ismael Hameed Mohammed,Abdul Hussein Ahmed
Abstract
There are millions of persons in this world have been suffered from land mines or other accidental events which have caused amputations. The human body feet provide stability and balance when standing and moving. Amputation of a foot highly decrease the amputee’s ability to practice common activities such as walking. The main target of a prostheses of any kind is to improve or return function to a physically disabled person. Although, the rapid developing of alternative prostheses technology, unfortunately, it is still a far from inquiring quite functional prosthetic limb replacement. The present study was focused on design and manufacturing of a two degree of freedom ankle rotation, plantar flexion- dorsiflexion in sagittal plane and inversion - eversion in frontal plain so as to mimic the normal human gait and also to reduce the pain and stress in the residual limb. Most ankle parts were formed from aluminum alloy and assembled to a carbon fiber foot laminated foot. The gait analysis was performed by the amputee user case study for both his prosthetic foot and the designed foot at the same optional ground surface conditions. The user foot angles responses were: eversion 2.60, inversion 2.60, plantar 8.70, dorsi 5.30, in contrast, the designed foot angles were: eversion 9.50, inversion 9.80, plantar 10.20, dorsi 10.40. The achieved designed maximum rolling in frontal plane was 100 inversion- eversion angle and the maximum rolling in sagittal plane were 120, 180 for plantar and dorsi flexion angle respectively.
Publisher
University of Diyala, College of Science
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference18 articles.
1. Joshua Bowen, Jerome Hausselle and Roger Gonzalez, “A Low-Cost Customizable Prosthetic Foot with Energy Return Capabilities”, Prosthetics and Orthotics Open Journal, Vol.2, No.1, (2018).
2. Joshua M. Caputo, “Informing ankle-foot prosthesis design and prescription through systematic experimentation with a tethered robotic prosthesis”, PhD Dissertation, Carnegie Mellon University, (2015).
3. Tommaso Lenzi, Marco Cempini, Jeremy Newkirk, Levi J. Hargrove and Todd A. Kuiken, “A Lightweight Robotic Ankle Prosthesis with Non-Back drivable Cam-based Transmission”, International Conference on Rehabilitation Robotics (ICORR) QEII Centre, London, UK, PP. 1132-1147, (2017).
4. Matthew Tomkin, Hossein Gholizadeh, Emily Sinitski, Edward D Lemaire,” Transtibial Amputee Gait with the Pro-Flex Foot During Level, Decline, and Incline Walking”, Canadian prosthetics & orthotics journal, volume 1, issue 2, (2018).
5. M Hamzah and A Gatta, “Design of a Novel Carbon-Fiber Ankle-Foot Prosthetic using Finite Element Modeling”, Materials Science and Engineering, (2018).