Effects of Photoradiation on the Growth and Potassium, Calcium, and Magnesium Uptake of Lettuce Cultivated by Hydroponics

Author:

Ainun Nur,Maneepong Somsak,Suraninpong Potjamarn

Abstract

Photoradiation plays a major role in plant growth processes, especially photosynthesis and nutrient uptake. Light intensity and photoperiod affect temperature and caused more transpiration in plants, which influences nutrient uptake. This study aimed to examine the effects of photoradiation on the growth and K, Ca, and Mg uptake of lettuce (Lactuca sativa L.). Lettuce was hydroponically grown in a walk-in growth chamber, and the experiment was performed using eight treatments with eight replications. A combination of eight fluorescent lamps was used to provide a photon flux density of 128±20 umole m-2 s-1 for 15/15 minutes, 45/15 minutes, 345/15+15/15 minutes of black UV, and 345/15+15/45 minutes of black UV of light/dark periods. A combination of ten fluorescent lamps was used to provide a photon flux density of 194±28 umole m-2 s-1 for 30/30 minutes, 15/15 minutes, and 45/15 minutes of light/dark periods and 24 hours of light period. Continuous illumination with higher light intensity gave the greatest shoot fresh weight, plant height and number of leaves. Whereas a shorter photoperiod and lower light intensity gave the lowest shoot fresh weight. Shortened UV light radiation gave better result in lettuce growth performance such as shoot fresh weight, plant height and number of leaves. UV light also damaged the lettuce leaves. The leaves turned brown (brown spot) at the tip of the old leaves. Molar concentrations of K, Ca and Mg in the lettuce leaves were in the order of K > Ca > Mg for all of the treatments. The steep gradient and highest K accumulation at bottom leaves were found at lower light intensity and short photoperiod (15/15 minutes of light/dark). Extended photoperiod improved K and Ca movement and reduced K and Ca accumulation in the bottom leaves. High K in the leaves reduced Ca uptake. Continuous illumination with higher light intensity resulted in the lowest concentrations of K, Ca and Mg. The mole ratio of K/Ca decreased from the top to bottom leaves, whereas the mole ratio of K/Mg tended to be stable except in the treatment with lower light intensity and short photoperoid. The best growth performance was found in the treatment with consistent K/Ca ratio.

Publisher

Canadian Center of Science and Education

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3