Adapatation of Sowing Date for Improving Sorghum Yield in Rainfed Areas in Sudan Using AQUACROP Model

Author:

Alshikh Mohammed Abd Almahamoud,Ibrahim M. Hassn,Salih Salah Abdel Rahman,Kadhim Ali Hussien,Almageed M. Khalid Abd

Abstract

Due to the rapid growth in world population, the pressure on water resources to feed the growing population is increasing. The Nile water share of Sudan is almost exploited; and agricultural production by rained water is threatened by the pressure of climate change. It is inevitable that the production per unit water consumed, the water productivity, must be increased to meet this challenge. This research therefore focuses on the benchmarking of physical water productivity in rain fed areas and gaining a better understanding of the temporal and spatial variations and the scope for possible improvement. A review of the available records and sources that provide measurements of crop-water productivity was consulted to assess plausible ranges of water productivity levels for rain fed Sorghum crop and to provide a first explanation for the differences that are found using AQUACROP model. As such this study may be considered as crucial step was to establish a water productivity database for the rain fed sorghum crop in the country. Sorghum (Sorghum bicolor (L.) Moench) which is the most important cereal crop in Sudan has been constrained by the detrimental effect of drought which has often caused food shortages. Almost 90% of the total sorghum cropped area is rain-fed, and 60% of that is in drought prone soil conditions. Spatial information on water use, crop production and water productivity will play a vital role for water managers to assess where scarce water resources are wasted and where in a given region the water productivity can be improved. Hence, a methodology has been developed in this study to quantify spatial variation of crop yield, evapotranspiration and water productivity using the AQUACROP model in five stations. The AQUACROP model is used to investigate optimum sowing date that result in maximization of grain yield.Benchmarking of rain fed Sorghum actual and potential grain efficiency in different agro-climate zones was made for the year 1979 to 2013. AQUACROP model was applied at five locations (Gedaref, Damazin, Dalang, El Fashir, and El Obyied) each representing an agro-climate zone. Causes of poor yield performance were investigated and consequently measures needed to improve performance were identified. The study indicates that increase in sorghum yields under historical climate conditions in the different studied stations is possible when early sowing is used and initial rain showers are utilized, yield decrease by 43% when sowing date is delayed from July 15 (the recommended date) to August 1. Stations with high rain fall (Damazin, Gadaref and Dalang) show little variations in inter-annual yields but with a tendency towards high yields, 3536, 3741, 3737 kg/fed for the above stations respectively compared to 2266 and 1086 kg/fed for El Obyied and El Fashir respectively at 15 June. The obtained WUE is lower in the driest regions (El Fashir, and El Obyied) and higher for those of high rain fall. To aid decision makers and crop growers in rain fed areas a set of recommendations for policy making and for future research were identified.

Publisher

Canadian Center of Science and Education

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regional modeling of winter wheat yield and water productivity under water-saving irrigation scenarios;Journal of Water and Climate Change;2022-09-16

2. Seasonal variation in sowing and its effect on ethanol and biomass yield of sweet sorghum;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2021-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3