Removal of Chromium and Nickel from Electroplating Wastewater Using Magnetite Particulate Adsorbent: (1) Effect of pH, Contact Time and Dosage, (2) Adsorption Isotherms and Kinetics

Author:

Dube Donatus,Parekh Champaklal T.,Nyoni Bothwell

Abstract

Wastewater discharged into municipal sewer systems from electroplating process plants contains a heavy load of metal ions and often requires pre-discharge treatment. Treatment of wastewater to reduce the concentration of metal ions employing an adsorption process has been studied using a wide range of adsorbents. In this work, the concentrations of chromium and nickel ions in wastewater samples from a local electroplating shop were found to be above the limits set out by the Bulawayo City Council, and the Environmental Management Agency, a statutory agency under the Ministry of Environment and Tourism, Government of Zimbabwe. Furthermore, the removal of chromium and nickel ions from the wastewater using magnetite as an adsorbent is studied. Magnetite particulate adsorbent used in this experiment has demonstrated to be an effective adsorbent material. At the optimum process operating pH of 4 – 7 the absorbent was able to achieve removal rates of up to 99% for chromium and 98% for nickel. The adsorption processes for chromium and nickel have been proven to be physical in nature using the Dubinin-Radushkevich isotherm model. Also, the adsorption kinetics data fit well with pseudo second-order kinetic model.

Publisher

Canadian Center of Science and Education

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Potential of Agricultural Waste Chars as Low-Cost Adsorbents for Heavy Metal Removal From Water;Advances in Environmental Engineering and Green Technologies;2024-04-26

2. Polyethyleneglycol-polyhydroxylbutyrate functionalized carbon nanotubes for industrial electroplating wastewater treatment;Separation and Purification Technology;2024-03

3. Removal of Ni (II) & Cr (VI) ions using banana peels in the aqueous solution;INTERNATIONAL CONFERENCE ON BIOENGINEERING AND TECHNOLOGY (IConBET2021);2022

4. Phytoremediation of liquid waste electroplating using Salvinia sp.;IOP Conference Series: Earth and Environmental Science;2020-09-01

5. Insights into Long-Term Toxicity of Triclosan to Freshwater Green Algae in Lake Erie;Environmental Science & Technology;2019-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3