Morphological and Biochemical Characterization of Soybean Nodulating Rhizobia Indigenous to Zambia

Author:

Kapembwa Rachael,Mweetwa Alice M.,Ngulube Munsanda,Yengwe Jones,Yengwe Jones

Abstract

<p>Soybean [<em>Glycine max</em> (L.) Merrill] is known for nitrogen fixation by rhizobia present in the soil with which it establishes an efficient symbiosis. In Zambia, current rhizobial inoculants used in soybeans production are based on non-indigenous strains; this creates a need to isolate local strains that can be used for the development of local inoculants for soybeans in Zambian soils. This paper reports the isolation and characterization of rhizobial isolates from virgin and cultivated soils of the three agro-ecological regions of Zambia. Rhizobia were isolated using the Trap Method and characterized using selected morphological and biochemical markers. A total of 61 isolates were isolated on Yeast Extract Mannitol (YEM) agar medium. Isolates varied in colony form, color, margin and texture. From the 61 isolates from the three regions, 87 % were circular, 8 % irregular and 5 % punctuate in form with 100 % convex elevation. The isolates had 88% entire, 10% undulate and 2 % lobate colony margins with different colors – 56 % cream, 24 % white, 11 % yellow, 5 % transparent and 3 % pink. Transparent colonies were peculiar to Region I and III while pink colonies were peculiar to Region III. All isolates produced mucous, were gram negative and rod shaped, a characteristic of rhizobial cells. None of the isolates could tolerate extremes of pH (4 and 9) in growth medium but grew well at pH 6.8. All isolates utilized glucose as a source of carbon. Based on the Bromothymol Blue (BTB) assay, 59 isolates were fast growing while two isolates from cultivated soils of region II were slow growing. The fast growing 59 isolates showed an acidic reaction changing the medium from green to yellow, while the others showed an alkaline reaction. Based on the results, the 59 fast-growers could be <em>Ensifer fredii </em>or/and<em> Rhizobium tropici </em>rather than <em>Bradyrhizobium</em>. However, further tests to confirm these findings using ketolactose, genetic characterization and inclusion of reference strains, are still needed and are being recommended here.</p>

Publisher

Canadian Center of Science and Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3