Imputation of Missing Values in Daily Wind Speed Data Using Hybrid AR-ANN Method

Author:

Basheer Shukur Osamah,Hisyam Lee Muhammad

Abstract

Wind speed data collection process faces several problems as failure of data observing devices. Therefore, windspeed data naturally contains missing values. Imputing these missing values using an effective method isimportant before performing time series analysis. The classical methods as linear, nearest neighbor, and statespace may not provide accurate imputations when the wind speed contains nonlinearity. In this study, the hybridartificial neural network (ANN) and autoregressive (AR) method is proposed for imputing the missing values.ANN is a nonlinear method that is capable of imputing the missing values in wind speed data with nonlinearcharacteristic. AR model is used for determining the structure of the input layer for the ANN. Listwise deletion isused before AR modeling to handle the missing values. A case study is carried out using daily Iraqi andMalaysian wind speed data. The proposed imputation method is compared with linear, nearest neighbor, andstate space methods. The comparison has shown that AR-ANN outperformed the classical methods. Inconclusion, the missing values in wind speed data with nonlinear characteristic can be imputed more accuratelyusing AR-ANN. Therefore, imputing the missing values using AR-ANN leads to more accurate performance oftime series modeling and analysis.

Publisher

Canadian Center of Science and Education

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3