Biogenic Synthesis of Zinc Oxide (ZnO) Nanoparticles Using a Fungus (Aspargillus niger) and Their Characterization

Author:

Shamim Aisha,Mahmood Tariq,Abid Monis Bin

Abstract

Nanoparticles are ultrafine structures with dimensions less than 100 nm. Nanoparticles have diverse applications. There are three important methods of fabrication of nanoparticles namely physical, chemical and biological methods. Physical method is a top down strategy for the fabrication of nanoparticles. It is energy intensive and time consuming. A chemical method is simple, but is expensive and requires expensive chemicals with high purity and also involves hazards of contaminations. Biological synthesis is very simple, cheap and environment friendly, requiring no expensive chemicals, temperature and is time saving. Plants and microorganisms are commonly used in this method. These are available everywhere. In the present work we synthesized Zinc Oxide (ZnO) nanoparticles by biological method using Aspargillus niger and zinc chloride (ZnCl2) as precursors. Biogenic synthesis of metallic nanoparticles by fungi is a safe and economical process because of formation of stable and small sized nanoparticles. Fungal biomass secretes proteins which act as reducing and stabilizing agents. The synthesized nanoparticles were characterized by XRD (X-Ray Diffraction), SEM (Scanning Electron Microscopy), UV-Vis (Ultraviolet, Visible) and EDX (Energy Dispersive X-Ray) techniques. Their size was in nm range and morphology of synthesized ZnO NPs was hexagonal. The ZnO nanoparticles are one of the most versatile materials and are used in cosmetics and in Bioenergy production, as a catalyst and as antibacterial material.

Publisher

Canadian Center of Science and Education

Subject

Materials Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3