Abstract
In this paper, we study the longtime behavior of solution to the initial boundary value problem for a class of strongly damped Higher-order Kirchhoff type equations: ${u_{tt}} + {( - \Delta )^m}{u_t} + {\left( {\alpha + \beta\left\| {{\nabla ^m}u} \right\|^2} \right)^{q}}{( - \Delta )^m}u + g(u) = f(x)$. At first, we do priori estimation for the equations to obtain two lemmas and prove the existence and uniqueness of the solution by the lemmas and the Galerkin method. Then, we obtain to the existence of the global attractor in $H_0^m(\Omega ) \times {L^2}(\Omega )$ according to some of the attractor theorem. In this case, we consider that the estimation of the upper bounds of Hausdorff for the global attractors are obtained. At last, we also establish the existence of a fractal exponential attractor with the non-supercritical and critical cases.
Publisher
Canadian Center of Science and Education
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献