PHYSICAL, CHEMICAL, AND ULTRASTRUCTURAL STUDIES OF WATER-SOLUBLE HUMAN AMYLOID FIBRILS

Author:

Pras Mordechai1,Zucker-Franklin Dorothea1,Rimon Abraham1,Franklin Edward C.1

Affiliation:

1. From the Department of Medicine, Rheumatic Disease Study Group, New York University Medical Center, New York 10016

Abstract

Amyloid fibrils were isolated from the tissues of nine patients with amyloidosis in a state of high purity by homogenization of the tissue followed by extraction with distilled water. Physical, chemical, and ultrastructural studies suggest that amyloid fibrils from different individuals resemble each other, but are not identical. In tissue sections as well as by negative staining of isolated fibrils, morphologic variations were observed. Among the isolated fibrils at least three types were noted. The majority resembled those described previously. However, one subject had two types of fibrils which differed in size and appearance. Most of the preparations sedimented as a single component with a sedimentation coefficient of 45–50S or as a larger polymer. However, two of the preparations had sedimentation coefficients of 8–9S, and a third one had a major 95S component and a minor 9S fraction. While the preparations of amyloid were not sufficiently pure for amino acid analyses, peptide maps demonstrated differences among amyloid preparations from different subjects. The amyloid fibrils in their native state proved to be remarkably resistant to digestion by a number of proteolytic enzymes. Several chemical methods were tried to produce smaller subunits. Of these, the most successful one was the use of 0.1 M NaOH which yielded a smaller, soluble fraction with sedimentation coefficients ranging from 1.1 to 2.8S. Accompanying this degradation, there was little loss of peptides or carbohydrates. Based on the results of the chemical analyses, it is estimated that the subunit produced by sodium hydroxide had a molecular weight of approximately 35,000–40,000.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3