MOLECULAR MECHANISM OF HEMOLYTIC ANEMIA IN HOMOZYGOUS HEMOGLOBIN C DISEASE

Author:

Lessin Lawrence S.1,Jensen Wallace N.1,Ponder Eric1

Affiliation:

1. From the Institut de Pathologie Cellulaire, Kremlin Bicetre, France, and the Department of Medicine, Ohio State University College of Medicine, Columbus, Ohio

Abstract

Erythrocytes from a patient with homozygous hemoglobin C disease were subjected to gradual osmotic dehydration by incubation in hypertonic saline. Serial observations of these cells before and after 4 and 12 hr incubation were carried out by means of interference, Soret absorption, polarization microscopy, and the electron microscope employing the freeze-etching technique. Light microscopic studies showed a progressive contraction of cellular contents into central masses which, after 12 hr dehydration, formed birefringent intracellular hemoglobin crystals in 50–75% of the cells. Electron microscopic study of freeze-etched replicas of these cells at 0, 4, and 12 hr of dehydration reveals progressive aggregation, alignment, and crystallization of hemoglobin molecules. Molecular aggregation found in C-C cells prior to osmotic dehydration was not seen in normal erythrocytes. Aggregation and packing varied from cell to cell. Reticulocytes showed a loosely packed aggregate mesh-work; older cells showed variation of molecular packing, which appeared tightest in cells corresponding to microspherocytes. With further loss of intracellular water, aggregates coalesced into patterns of tighter molecular packing with small regions of alignment, and, finally, crystallization occurred. Hemoglobin molecules measuring 70 A in diameter were readily identified within the period patterns of intracellular crystals. These findings suggest that the hemoglobin C molecules within C-C erythrocytes exist in an aggregated state. As the cell ages, intracellular water is lost and intermolecular distance decreases, hemoglobin C molecules polymerize into intracellular crystals. This pathological behavior of hemoglobin C is associated with a charge alteration conferred by the substitution of beta-6-lysine for glutamic acid on the external surface in the A-helix region of the beta-chain of the molecule, possibly increasing intermolecular attraction. Molecular aggregation accounts for the increased rigidity of C-C cells which leads to accelerated membrane and water loss with resultant microspherocyte formation. The microspherocyte, with highest intracellular hemoglobin concentration, rapidly undergoes intracellular crystallization, and is sequestered and destroyed by reticuloendothelial elements.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3