HMGB1 release induced by liver ischemia involves Toll-like receptor 4–dependent reactive oxygen species production and calcium-mediated signaling

Author:

Tsung Allan1,Klune John R.1,Zhang Xianghong1,Jeyabalan Geetha1,Cao Zongxian1,Peng Ximei1,Stolz Donna B.2,Geller David A.1,Rosengart Matthew R.1,Billiar Timothy R.1

Affiliation:

1. Department of Surgery

2. Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15213

Abstract

Ischemic tissues require mechanisms to alert the immune system of impending cell damage. The nuclear protein high-mobility group box 1 (HMGB1) can activate inflammatory pathways when released from ischemic cells. We elucidate the mechanism by which HMGB1, one of the key alarm molecules released during liver ischemia/reperfusion (I/R), is mobilized in response to hypoxia. HMGB1 release from cultured hepatocytes was found to be an active process regulated by reactive oxygen species (ROS). Optimal production of ROS and subsequent HMGB1 release by hypoxic hepatocytes required intact Toll-like receptor (TLR) 4 signaling. To elucidate the downstream signaling pathways involved in hypoxia-induced HMGB1 release from hepatocytes, we examined the role of calcium signaling in this process. HMGB1 release induced by oxidative stress was markedly reduced by inhibition of calcium/calmodulin-dependent kinases (CaMKs), a family of proteins involved in a wide range of calcium-linked signaling events. In addition, CaMK inhibition substantially decreased liver damage after I/R and resulted in accumulation of HMGB1 in the cytoplasm of hepatocytes. Collectively, these results demonstrate that hypoxia-induced HMGB1 release by hepatocytes is an active, regulated process that occurs through a mechanism promoted by TLR4-dependent ROS production and downstream CaMK-mediated signaling.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3