Differential ability of isolated H-2 Kb subsets to serve as TCR ligands for allo-specific CTL clones: potential role for N-linked glycosylation.

Author:

Shen L1,Kane K P1

Affiliation:

1. Department of Immunology, Faculty of Medicine, University of Alberta, Edmonton, Canada.

Abstract

It is not known whether all forms of cell surface peptide-class I complexes, when bound with relevant peptide antigen, are recognized by T cells. We demonstrate herein that two distinct subsets of the murine H-2 Kb molecule can be separately isolated from H-2b-expressing cell lines using Y3 mAb immunoaffinity chromatography. Although both isolated Kb subsets were found to be strongly reactive with Y3 mAb by ELISA, one Kb subset is S19.8 mAb reactive (Ly-m11+Kb subset) and exhibits low reactivity with the M1/42 antibody, while the other subset is negative for the Ly-m11 epitope and highly reactive with the M1/42 antibody (M1/42high Kb subset). More importantly, whereas the M1/42high Kb subset is a very effective ligand for both TCR and CD8, the Ly-m11+ Kb subset could only function as a CD8 ligand, as determined in allo-specific CD8+ CTL clone adhesion and degranulation assays. Peptides acid-eluted from both Kb subsets sensitized Kb-transfected T2 cells expressing "peptide empty" Kb for lysis to a similar extent by allo-CTL clones, indicating that relevant endogenous peptide antigens are not limiting in the Ly-m11+ Kb subset. The major distinction identified between the two Kb subsets is that they differ substantially in their degree of N-linked glycosylation, with the Ly-m11+ subset containing Kb molecules with larger and more complex carbohydrate modifications than the M1/42high subset. The differences in glycosylation may explain the functional differences observed between the two Kb subsets. It is therefore possible that some forms of glycosylation on class I molecules interfere with TCR recognition and may limit CD8+ T cell responses, perhaps under circumstances where peptide antigen is limiting.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3