PML suppresses oncogenic transformation of NIH/3T3 cells by activated neu.

Author:

Liu J H1,Mu Z M1,Chang K S1

Affiliation:

1. Division of Laboratory Medicine, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA.

Abstract

The chromosomal translocation t(15;17)(q22;q12) is a consistent feature of acute promyelocytic leukemia (APL) that results in the disruption of genes for the zinc finger transcription factor PML and the retinoic acid receptor alpha (RAR alpha). We have previously shown that PML is a growth suppressor and is able to suppress transformation of NIH/3T3 by activated neu oncogene. In the study presented here, the full-length PML cDNA was transfected into B104-1-1 cells (NIH/3T3 cells transformed by the activated neu oncogene) by retrovirally mediated gene transfer. We found that expression of PML could reverse phenotypes of B104-1-1 including morphology, contact-limiting properties, and growth rate in both transient-expression and stable transfectants. We also demonstrated that PML is able to suppress clonogenicity of B104-1-1 in soft agar assay and tumorigenicity in nude mice. These results strongly support our previous finding that PML is a transformation or growth suppressor. Our results further demonstrate that expression of PML in B104-1-1 cells has little effect on cell cycle distribution. Western blot analysis demonstrated that suppression of neu expression in B104-1-1 by PML was insignificant in the transient transfection experiment but significant in the PML stable transfectants. This study suggests that PML may suppress neu expression and block signaling events associated with activated neu. This study supports our hypothesis that disruption of the normal function of PML, a growth or transformation suppressor, is a critical event in APL leukomogenesis.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3