Affiliation:
1. Institute of Immunology, University of Munich, Germany.
Abstract
The nature of alloantigens seen by T lymphocytes, in particular the role of peptides in allorecognition, has been studied intensively whereas knowledge about the in vivo emergence, diversity, and the structural basis of specificity of alloreactive T cells is very limited. Here we describe human T cell clones that recognize HLA-B35 alloantigens in a peptide-dependent manner. TCR sequence analysis revealed that several of these allospecific clones utilize homologous TCR: they all express TCRAV2S3J36C1 and TCRBV4S1J2S7C2 chains with highly related CDR3 sequences. Thus peptide-specific alloreactivity is reflected in homologous CDR3 sequences in a manner similar to that described for T cells that recognize nominal peptide/self-MHC complexes. The in vivo frequency of this TCR specificity was studied in unstimulated PBL of the responding cell donor who was not sensitized against HLA-B35. The vast majority (approximately 75%) of the VA2S3J36 junctional regions obtained from two samples of PBL, isolated at a 9-yr interval, encode CDR3 identical or homologous to those of the functionally characterized HLA-B35 allospecific T cells. These data are most easily explained by a model of alloreactivity in which persistent or recurrent exposure to a foreign peptide/self-MHC complex led to the in vivo expansion and long-term maintenance of specific T cells that show fortuitous crossrecognition of an HLA-B35/peptide complex and dominate the alloresponse against HLA-B35.
Publisher
Rockefeller University Press
Subject
Immunology,Immunology and Allergy
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献