The class I-b molecule Qa-1 forms heterodimers with H-2Ld and a novel 50-kD glycoprotein encoded centromeric to I-E beta.

Author:

Wolf P R1,Cook R G1

Affiliation:

1. Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030.

Abstract

Recent biochemical characterization of the T23-encoded Qa-1 molecule revealed an additional higher molecular mass species of 50 kD coprecipitated with the 48-kD Qa-1 molecule in H-2b and H-2d mouse strains. We now demonstrate that the 50-kD protein coprecipitated with Qa-1 is the class I-a antigen Ld in all H-2Ld-positive mouse strains examined. Furthers analyses of a panel of recombinants revealed that the 50-kD protein coprecipitated with Qa-1 in H-2b haplotype mouse strains is encoded or controlled by a gene centromeric to major histocompatibility complex class II I-E beta. We have designated this gene and corresponding protein product as Qsm, Qa-1 structure modifier. Both Ld and Qsm can interact with Qa-1 to form cell surface-expressed heterodimers in vivo. These Qa-1 heterodimers are not expressed in H-2k haplotype cells. The Qa-1/Ld and Qa-1/Qsm heterodimers are associated by noncovalent interactions and occur only between fully processed proteins. In addition, we show that the Qsm-encoded protein can form heterodimers with Ld as well, and that the Ld molecules participating in these interactions with Qa-1 and Qsm may be devoid of beta 2-microglobulin and/or peptide. These data represent the first demonstration that class I molecules can be expressed as heterodimers (Qa-1/Ld) on the cell surface, and map a gene (Qsm) that may potentially encode a novel class I molecule, or another protein, that associates with both Qa-1 and Ld. These interactions may enable increased levels of Qa-1 to reach the cell surface and may subsequently influence T cell recognition of Qa-1 and/or Ld molecules.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3