Fas antigen stimulation induces marked apoptosis of T lymphocytes in human immunodeficiency virus-infected individuals.

Author:

Katsikis P D1,Wunderlich E S1,Smith C A1,Herzenberg L A1,Herzenberg L A1

Affiliation:

1. Department of Genetics, Stanford University School of Medicine, California 94305, USA.

Abstract

Apoptosis (programmed cell death) of T lymphocytes has been proposed as a mechanism which plays an important role in the pathogenesis of human immunodeficiency virus (HIV) disease. Activation of Fas (CD95) can either result in costimulation of proliferation and cytokine production or in the induction of apoptosis of T lymphocytes. This raises the possibility that Fas is involved in the observed T cell apoptosis during HIV disease. In this report we show that peripheral blood CD4+ and CD8+ T lymphocytes from HIV-infected individuals undergo apoptosis in vitro in response to antibody stimulation (cross-linking) of Fas at a much higher frequency than from uninfected controls. This anti-Fas-induced T cell apoptosis is markedly higher than spontaneous T cell apoptosis in HIV-infected individuals. Antibodies against other members of the tumor necrosis factor (TNF)/nerve growth factor receptor family such as CD27, CD30, CD40, 4-1BB, p55 TNF receptor, p75 TNF receptor, and TNF receptor-related protein did not result in any increase of T cell apoptosis above that spontaneously observed in HIV+ individuals. Anti-Fas-induced apoptosis was much higher in symptomatic HIV-infected individuals; and the magnitude of anti-Fas-induced CD4+ T cell apoptosis correlated inversely with peripheral blood CD4+ T cell absolute counts. Surface expression of Fas on T cells was also found to be higher in HIV-infected individuals. Resting and activated CD4+ and CD8+ T cells both underwent apoptosis in response to anti-Fas antibody. L-Selectin positive memory CD4+ T cells were especially susceptible to anti-Fas-induced apoptosis. These findings show that CD4+ and CD8+ T lymphocytes in HIV-infected individuals are primed in vivo to undergo apoptosis in response to Fas stimulation, suggesting that Fas signaling may be responsible for the T lymphocyte functional defects and depletion observed in HIV disease.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3