Species-specific differences in chaperone interaction of human and mouse major histocompatibility complex class I molecules.

Author:

Nössner E1,Parham P1

Affiliation:

1. Department of Cell Biology, Stanford University, California 94305.

Abstract

Previous studies have shown that immature mouse class I molecules transiently associate with a resident endoplasmic reticulum protein of 88 kD that has been proposed to act as a chaperone for class I assembly. Subsequently, this protein was demonstrated to be identical to calnexin and to associate with immature forms of the T cell receptor complex, immunoglobulin, and human class I HLA heavy chains. In this paper we define further the interaction of human class I HLA heavy chains with chaperone proteins and find key differences with the complexes observed in the mouse system. First, calnexin and immunoglobulin binding protein (BiP) both associate with immature HLA class I heavy chains. The two chaperones are not found within the same molecular complex, suggesting that calnexin and BiP do not interact simultaneously with the same HLA class I heavy chain. Second, only free HLA class I heavy chains, and not beta 2-microglobulin (beta 2m)-associated heavy chains are found associated with the chaperones. Indeed, addition of free beta 2m in vitro induces dissociation of chaperone-class I HLA heavy chain complexes. The kinetics for dissociation of the class I HLA heavy chain-chaperone complexes and for formation of the class I HLA heavy chain-beta 2m complex display a reciprocity that suggests the interactions with chaperone and beta 2m are mutually exclusive. Mouse class I heavy chains expressed in human cells exhibit the mouse pattern of interaction with human chaperones and human beta 2m and not the human pattern, showing the difference in behavior is purely a function of the class I heavy chain sequence.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3