5-lipoxygenase and 5-lipoxygenase-activating protein are localized in the nuclear envelope of activated human leukocytes.

Author:

Woods J W1,Evans J F1,Ethier D1,Scott S1,Vickers P J1,Hearn L1,Heibein J A1,Charleson S1,Singer I I1

Affiliation:

1. Department of Biochemical and Molecular Pathology, Merck Research Laboratories, Rahway, New Jersey 07065.

Abstract

The intracellular distribution of the enzyme 5-lipoxygenase (5-LO) and 5-lipoxygenase-activating protein (FLAP) in resting and ionophore-activated human leukocytes has been determined using immuno-electronmicroscopic labeling of ultrathin frozen sections and subcellular fractionation techniques. 5-LO is a 78-kD protein that catalyzes the conversion of arachidonic acid to leukotrienes. FLAP is an 18-kD membrane bound protein that is essential for leukotriene synthesis in cells. In response to ionophore stimulation, 5-LO translocates from a soluble to a sedimentable fraction of cell homogenates. In activated leukocytes, both FLAP and 5-LO were localized in the lumen of the nuclear envelope. Neither protein could be detected in any other cell compartment or along the plasma membrane. In resting cells, the FLAP distribution was identical to that observed in activated cells. In addition, subcellular fractionation techniques showed > 83% of immunoblot-detectable FLAP protein and approximately 64% of the FLAP ligand binding activity was found in the nuclear membrane fraction. A fractionation control demonstrated that a plasma membrane marker, detected by a monoclonal antibody PMN13F6, was not detectable in the nuclear membrane fraction. In contrast to FLAP, 5-LO in resting cells could not be visualized along the nuclear envelope. Except for weak labeling of the euchromatin region of the nucleus, 5-LO could not be readily detected in any other cellular compartment. These results demonstrate that the nuclear envelope is the intracellular site at which 5-LO and FLAP act to metabolize arachidonic acid, and that ionophore activation of neutrophils and monocytes results in the translocation of 5-LO from a nonsedimentable location to the nuclear envelope.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 372 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3