Multiple rearrangements in T cell receptor alpha chain genes maximize the production of useful thymocytes.

Author:

Petrie H T1,Livak F1,Schatz D G1,Strasser A1,Crispe I N1,Shortman K1

Affiliation:

1. Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.

Abstract

Peripheral T lymphocytes each express surface T cell receptor (TCR) alpha and beta chains of a single specificity. These are produced after random somatic rearrangements in TCR alpha and beta germline genes. Published model systems using mice expressing TCR alpha and/or beta chain transgenes have shown that allelic exclusion occurs conventionally for TCR-beta. TCR alpha chain expression, however, appears to be less strictly regulated, as endogenous TCR alpha chains are often found in association with transgenic TCR beta chains in TCR alpha/beta transgenic mice. This finding, coupled with the unique structure of the TCR alpha locus, has led to the suggestion that unlike TCR beta and immunoglobulin heavy chain genes, TCR alpha genes may make multiple rearrangements on each chromosome. In the current study, we demonstrate that the majority of TCR-, noncycling thymocytes spontaneously acquire surface expression of CD3/TCR. Further, we show that cultured immature thymocytes originally expressing specific TCR alpha and beta chains may lose surface expression of the original TCR alpha, but not beta chains. These data provide evidence that not only must multiple rearrangements occur, but that TCR alpha gene rearrangement continues even after surface expression of a TCR alpha/beta heterodimer, apparently until the recombination process is halted by positive selection, or the cell dies. Sequential rearrangement of TCR alpha chain genes facilitates enhanced production of useful thymocytes, by increasing the frequency of production of both in-frame rearrangements and positively selectable TCR alpha/beta heterodimers.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 213 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3